Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Aerosols in Jupiter’s stratosphere form intriguing polar hoods, which have been investigated by ultraviolet cameras on Cassini and the Hubble Space Telescope. Transient, concentrated dark ovals of unknown origin have been noted within both the northern and southern polar hoods. However, a systematic comparative study of their properties, which could elucidate the physical processes active at the poles, has not yet been performed due to infrequent observations. Using 26 global maps of Jupiter taken by Hubble between 1994 and 2022, we detected transient ultraviolet-dark ovals with a 48% to 53% frequency of occurrence in the south. We found the southern dark oval to be 4 to 6 times more common than its northern counterpart. The southern feature is an anticyclonic vortex and remains within the auroral oval during most of its lifetime. The oval’s darkness is consistent with a 20 to 50 times increase in haze abundance or an overall upward shift in the stratospheric haze distribution. The anticyclonic vorticity of the dark oval is enhanced relative to its surroundings, which represents a deep extension of the higher-altitude vortices previously reported in the thermosphere and upper stratosphere. The haze enhancement is probably driven by magnetospheric momentum exchange, with enhanced aerosols producing the localized heating detected in previous infrared retrievals.more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            Polymer nanofibers hold promise in a wide range of applications owing to their diverse properties, flexibility, and cost effectiveness. In this study, we introduce a polymer nanofiber drawing process in a scanning electron microscope and focused ion beam (SEM/FIB) instrument with in situ observation. We employed a nanometer-sharp tungsten needle and prepolymer microcapsules to enable nanofiber drawing in a vacuum environment. This method produces individual polymer nanofibers with diameters as small as ∼500 nm and lengths extending to millimeters, yielding nanofibers with an aspect ratio of 2000:1. The attachment to the tungsten manipulator ensures accurate transfer of the polymer nanofiber to diverse substrate types as well as fabrication of assembled structures. Our findings provide valuable insights into ultrafine polymer fiber drawing, paving the way for high-precision manipulationmore » « less
- 
            Abstract Minerals are information-rich materials that offer researchers a glimpse into the evolution of planetary bodies. Thus, it is important to extract, analyze, and interpret this abundance of information to improve our understanding of the planetary bodies in our solar system and the role our planet’s geosphere played in the origin and evolution of life. Over the past several decades, data-driven efforts in mineralogy have seen a gradual increase. The development and application of data science and analytics methods to mineralogy, while extremely promising, has also been somewhat ad hoc in nature. To systematize and synthesize the direction of these efforts, we introduce the concept of “Mineral Informatics,” which is the next frontier for researchers working with mineral data. In this paper, we present our vision for Mineral Informatics and the X-Informatics underpinnings that led to its conception, as well as the needs, challenges, opportunities, and future directions of the field. The intention of this paper is not to create a new specific field or a sub-field as a separate silo, but to document the needs of researchers studying minerals in various contexts and fields of study, to demonstrate how the systemization and enhanced access to mineralogical data will increase cross- and interdisciplinary studies, and how data science and informatics methods are a key next step in integrative mineralogical studies.more » « less
- 
            Vernet, Joël R; Bryant, Julia J; Motohara, Kentaro (Ed.)
- 
            null (Ed.)Extended Berkeley Packet Filter (BPF) has emerged as a powerful method to extend packet-processing functionality in the Linux operating system. BPF allows users to write code in high-level languages (like C or Rust) and execute them at specific hooks in the kernel, such as the network device driver. To ensure safe execution of a user-developed BPF program in kernel context, Linux uses an in-kernel static checker. The checker allows a program to execute only if it can prove that the program is crash-free, always accesses memory within safe bounds, and avoids leaking kernel data. BPF programming is not easy. One, even modest-sized BPF programs are deemed too large to analyze and rejected by the kernel checker. Two, the kernel checker may incorrectly determine that a BPF program exhibits unsafe behaviors. Three, even small performance optimizations to BPF code (e.g., 5% gains) must be meticulously hand-crafted by expert developers. Traditional optimizing compilers for BPF are often inadequate since the kernel checker's safety constraints are incompatible with rule-based optimizations. We present K2, a program-synthesis-based compiler that automatically optimizes BPF bytecode with formal correctness and safety guarantees. K2 produces code with 6--26% reduced size, 1.36%--55.03% lower average packet-processing latency, and 0--4.75% higher throughput (packets per second per core) relative to the best clang-compiled program, across benchmarks drawn from Cilium, Facebook, and the Linux kernel. K2 incorporates several domain-specific techniques to make synthesis practical by accelerating equivalence-checking of BPF programs by 6 orders of magnitude.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
